Department of Biosciences

Lesson Plan - B. Sc. I Semester (July 2016 - Dec 2016)

Subject - Chemistry - I

Teacher - Prof. Deepanshu Pandey

Day/Lecture	Unit	Topic
1	Unit 1	A. Mathematical Concept :
2	Unit 1	Logarithm relations (rules & types)
3	Unit 1	Use of log table and antilog table in calculation
4		Curve sketching (Straigth line and linear graphs), Calculation of slopes
5		Differentiation of functions like Kx,sin x, log x
6		Multiplication and division in differentiation
7	Unit 1	maxima and minima
8		partial differentiation, Integration of some useful/ relevent functions
9		Factorials
10	Unit 1	Probability
11	Unit 1	Revision of chapter after completion of unit
12	Unit 1	B. Gaseous States and Molecular Velocitites :
13	Unit 1	Critical Phenomenon: PV isotherm of ideal gases
14		Andrew's experiment
15	Unit 1	Continuity of state
16		Isotherms of van der waal's equation
17		relationship between critical constants and vander waals constants
18		Root mean square, average & most probable velocitites
19		
20	Unit 1	collision numbers, mean free path and collision diameter
21	Unit 2	A. Liquid States: Intermolecular forces, structure of liquids, Liquid crystals
22	Unit 2	Difference between liquid crystal,solid & liquid
23	Unit 2	classification, structure of nematics and cholestric phases
24	Unit 2	Thermography, & seven segment cell
25	Unit 2	B. Solid State: Defination of space lattice, Unit cell
26	Unit 2	Laws of crystallography: (a) Law of constancy of interfacial angles,
27	Unit 2	(b) law of rationality of indices (c) law of symmetry
28	Unit 2	Symmetry elements in crystal, ionic solid structures, Radius Ratio effect
29	Unit 2	Coordination number, limitation of radius rule lattice defects
30	Unit 2	Revision of chapter after completion of unit
31	Unit 3	(a) Elementary Quantum Mechanics: Dual Nature of matter, idea of de Broglie matter waves
32	Unit 3	Heisenberg uncertainity principle, atomic orbital
33	Unit 3	Schrodinger wave equation, Significance of \bar{Y} and \bar{Y}
34	Unit 3	quantum numbers, radial and angular wave functions
35	Unit 3	probability distribution curves, shapes of s,p,d, orbitals
36		Aufbau and pauli exclusion principles, Hund's multiplicity rule
37		Electronic configuration of the elements, effective nulcear charge
38		(b) Periodic Properties: Atomic and ionic radii, ionization energy
39		electron affinity, electronegativity- defination, methods of determination or evaluation
40		treands in periodic table and applications in predicting and explaing chemical behaviuor
41		Revision after the completion of the unit.
42		(c) Chemical Bonding: Covalent Bond- Valence bond theory and its limitations
43		directional characteristic of covalent bond
44		71 71 72
45		Valence shell electron pair repulsion (VSEPR) theory to NH3
46		Valence shell electron pair repulsion (VSEPR) theory to H3O,SF4,ClF3 and H2O
47		Revision of chapter after completion of unit
48	Unit 4	(a)S-Block Elements: Comparative study Li and Mg
49		diagonal relationships, slient features of hydrides, solvation and complexation
50		tnedencies including their function in biosystemsan introduction to alkyls and aryls
51	Unit 4	(b)P-Block Elements I: Comparative study Be and Al
52	Unit 4	diagonal relationship of groups 13-17 elements
53	Unit 4	Compounds like hydrides, oxides
54	Unit 4	oxyacids of groups 13-16

55	Unit 4	halide of groups 13-16
56	Unit 4	Hydrides of boron-diborane and higher boranes
57	Unit 4	Hydrides of boron-diborane and higher boranes
58	Unit 4	borazine borohydrides
59	Unit 5	(a) Bond lengths and bond angles, bond energy: Defination
60	Unit 5	localized and delocalized chemical bond
61	Unit 5	inclusion compounds, clatherates
62	Unit 5	charge transfer complexes
63	Unit 5	resonance, hyperconjugation
64	Unit 5	inductive, electromeric, mesomeric and steric effect
65	Unit 5	Hydrogen bonding
66	Unit 5	(b) Types of Reagents: homolytic and heterolytic bond fission
67	Unit 5	Types of reagents- electrophiles and nucleophiles
68	Unit 5	Types of organic reaction, energy consideration
69	Unit 5	Homolytic and heterolytoic cleavage
70	Unit 5	Reactive intermediates- Carbocations
71	Unit 5	Carboanions, free radicals
72	Unit 5	Carbenes\ Benzynes
73	Unit 5	(c) Stereochemistry: Concept of Stereoisomerism, types of stereoisomerism
74	Unit 5	element of symmetry, Chiral and Achiral compounds
75	Unit 5	Fischer projection formulae; optical isomerism of lactic and tartaric acids
76	Unit 5	enantiomerism and diastereoisomerism
77	Unit 5	configuration (realtive and absolute); conformation of ethane and n-butane and cyclohexane
78	Unit 5	D, L & R,S notation of compounds containing chiral centers
79	Unit 5	projection formulae- Fischer, Newman and Sawhorse of compounds containing adjecent chiral centers
80	Unit 5	meso and dl- isomers
81	Unit 5	erythro and threo isomers; racemization and resolution
82	Unit 5	geometrical isomer; E & Z notation
83	Unit 5	Revision after the completion of the unit.

Department of Biosciences

Lesson Plan - B. Sc. I Semester (July 2016 - Dec 2016)

Subject - Chemistry Practical

Teacher - Prof. Deepanshu Pandey

Day/Lecture	Unit	Торіс
1		Physical Chemistry : An introduction
		(A) Any one experiment :
2		(i) Calibration of thermometer
3		(ii) Determination of melting point
4		(iii) Determination of boiling point
5		(iv) Preparation of solution of various concentration NaOH,HCl, H2SO4
6		(B) Any one experiment :
7		(i) Determination of surface tension/percentage composition of given liquid mixture using surface tension method
8		(ii) Determination of viscocity/ percentage composition of given liquid mixture using viscocity method.
		Organic Chemistry (Any two)
9		(i) Distillation
10		(ii)crystallization
11		(iii) Decolorisation and crystallization using charcoal
12		(iv) sublimation
13	•	(v) Detection of elements and functional groups
14		(vi) Organic molecules through models with special reference to optical and geometrical isomerism

Department of Biosciences

Lesson Plan - B. Sc. II Semester (Jan 2017 - June 2017)

Subject - Chemistry - I Paper : Physical Chemistry Teacher - Prof. Deepanshu Pandey

Teacher - Prof. Deepanshu Pandey		
Day/Lecture	Unit	Topic
1	Unit 1	Chemical Kinetics: Chemical kinetics and its scope, rate of a reaction
2	Unit 1	Factors affecting rate : Conc, temp., solvent, light, catalyst, pressure
3	Unit 1	Dependence of rate on concentration,
4	Unit 1	Mathematical characteristic of simple chemical reaction: Zero order, First order, Second, Pseudo
5	Unit 1	half life and mean life, Determination of the order of reaction
6	Unit 1	Differential method, half life method
7	Unit 1	Determination of the order of reaction by integration method
8	Unit 1	study of chemical kinetics by polarimetry
9	Unit 1	study of chemical kinetics by spectrophotometery
10		Effect of temperature on rate of reaction
11	Unit 1	Arrhenius equation, Concept of activation energy
12	Unit 1	Simple collision theory, transition state theory
13	Unit 1	Revision of chapter after completion of unit
14		(a) Thermodynamics : defination of thermodtnamics
15		terms: system, surrounding, Types of systems
16		intensive and extensive properties
17		state and path function and their differential
18		thermodynamic process
19	Unit 2	concept of heat and work
20	Unit 2	(b) Molecular Orbital Theory: homonuclear and heteronuclear diatomic molecules
21	Unit 2	multicenter bonding in electron deficient molecules
22		bond strength and bond energy
23	Unit 2	calculation of percentage ionic character from dipole momnet and electronegativity difference
24	Unit 2	(c) Ionic Solids : semiconductor, lattice energy and Born haber cycle
25	Unit 2	Solvation energy and solubility of ionic solids
26	Unit 2	polarizing power and polarizability of ions
27	Unit 2	Fajan's rule, metallic bond
28		Free electron, Valence bond
29	Unit 2	Band theories
30	Unit 2	Revision of chapter after completion of unit
31	Unit 3	(a) Acids and Bases: Arrhenius, Bronsted- Lowry,
32	Unit 3	Solvent system, Lewis Concepts
33		(b) Chromatographic Techniques: Defination, classifications and principle
34	Unit 3	seperation of inorganic ions, amino acids
35		seperation of carbohydrates (Paper chromatography & TLC methods)
36		seperation of carbohydrates (Paper chromatography & TLC methods)
37		Revision of chapter after completion of unit
38		Alkanes and cycloalkanes: IUPAC nomenclature of branched and unbranched alkanes
39	Unit 4	classification of alkanes, isomerism in alkanes
40	Unit 4	methods of formation (Wurtz rxn, Kobe Rxn, Corey House Rxn, Decarboxylation)
41	Unit 4	physical and chemical reaction of alkanes
42	Unit 4	conformation of alkanes
43	Unit 4	mechanism of free radical halogenation of alkanes
44		cycloalkanes-nomenclature, methods of formation,
45	Unit 4	chemical reaction, Baeyer strain theory and its limitation
46		Theory of strainless rings
47		The case of cyclopropane ring : Banana bonds
48	Unit 4	conformation of cycloalkanes
49	Unit 4	Revision of chapter after completion of unit
50	Unit 5	Alkene, Cycloalkenes, Dienes: Nomenclature of alkenes

51	Unit 5	methods of formation - mechanism of dehydration of alcohols and dehydrogenation of alkyl halides
52	Unit 5	ragioselectivity in alcohol dehydration
53	Unit 5	The saytzeff rule
54	Unit 5	Hofmann elimination
55	Unit 5	physical properties and relative satbilities of alkenes
56	Unit 5	Chemical reaction of alkenes- mechanism involved in hydrogenation
57	Unit 5	electrophilic and free radical addition
58	Unit 5	Markownikoff's rule
59	Unit 5	hydroboration- oxidation, oxymercuration reduction
60	Unit 5	Epoxidation, ozonolysis
61	Unit 5	polymerization of alkenes
62	Unit 5	substitution of allylic and vinylic positions
63	Unit 5	application of ethylene and propene
64	Unit 5	Methods of formation, conformation and chemical reactions of cycloalkanes
65	Unit 5	Nomenclature and classification of dienes: isolated, conjugated and cumulated dienes
66	Unit 5	structure of allenes and butadiene
67	Unit 5	methods of formation
68	Unit 5	polymerisation
69		Chemical reaction- 1,2 and 1,4 addition
70	Unit 5	Diels- Alder reaction
71	Unit 5	Revision on completion of the unit
72		Alkynes and Alkyl Halides: Nomenclature, structure and bonding of alkynes
73	Unit 5	Methods of formation, chemcial reactions
74	Unit 5	acidity of alkynes, Mechanism of electroplilic and nucleophilic addition reaction
75	Unit 5	hydroboration oxidation, metal- ammonia reduction- oxidation
76		polymerization of alkynes
77	Unit 5	Nomenclature and classification of alkyl halides
78		methods of formation, chemical reactions
79	Unit 5	Mechanism of nucleophilic substitution reaction of alkyl halides
80		SN 1 and SN 2 reaction with energy profile diagrams
81	Unit 5	Elimination reaction
82		Polyhalogen compounds : methods of preperation
83	Unit 5	properties of chloroform and carbon tetrachloride
84	Unit 5	Revision on completion of the unit

Department of Biosciences

Lesson Plan - B. Sc. II Semester (Jan 2017 - June 2017)

Subject - Chemistry Practical Teacher - Prof. Deepanshu Pandey

Day/Lecture	Unit	Topic
1		Physical Chemistry : An introduction
		(A) Any one experiment :
2		(i) To determine the velocity constant of hydrolysis of methyl acetate catalyzed by hydrogen ions at room temperature
3		(ii) To study the effect of acid strength on the hydrolysis of an ester
4		(iii) To compare the strength of HCl and H2SO4 by studying the kinetics of hydrolysis of ester.
5		(iv) Kinetic studies of decomposition of iodided by H2O2 (iodine clock reaction)
6		Inorganic Chemistry : An introdution
7 to 15		(i) Inorganic mixture analysis
		Mixture analysis for 2 cation and 2 anions
19 to 20		(ii) Separation of cations by paper chromatography
		Organic Chemistry (Any two)
23 to 25		(iii) Detection of elements
26 to 32		(iv) Identification of functional group

Department of Chemical Science

Lesson Plan - B.Sc. III sem (July 2016 - Dec 2016)

Subject - Chemistry Paper I(Chemistry) **Teacher - Prof. Seema Shintre**

Day/Lecture	Unit	Торіс
	1	Arenes and Aromaticity
1		Structure of Benzene, molecular formula and kekule structure.
2		Stability and carbon-carbon bond lengths of benzene, resonance structure.
3		MO picture, Aromaticity, The Huckel rule.
4		Aromatic electrophilic substitution, mechanism of nitration
5		mechanism of halogenation, sulphonation
6		mercuration and Fridel-crafts reaction and energy profile diagram.
		Aryl Halide
7		Methods of formation and reactions of aryl halide
8		Mechanism of nucleophilic aromatic substitution, synthesis and uses of DDT
9		Synthesis and uses of BHC and Freon.
	2	(a)Alcohols: classification and nomenclature
10		Monohydric alcohol: nomenclature, methods of formation by reduction of aldehyde, ketones
11		Carboxilic acid and esters, acidic nature
12		reaction of alcohols
13		Dihydric alcohol: Nomecluture, methods of formation, chemical reactions of vicinal glycols
14		Oxidative cleavage and pinacol-pinacolone rearrangement
15		Trihydric alcohols- Nomenclature and methods of formation
16		Chemical reaction of glycerol
		(b) Phenols
17		Nomenclature, structure and methods of formation
18		Acidic character, comparative acidic strength of alcohols and phenols
19		
-		Stabilization of phenoxide ion by resonance, acylation and carboxilation mechanism of Fries rearrangement
20		Gatterman synthesis, Hauben-Hoesch reaction
21		Lederer-Manasse reaction and Reimer-Tiemann reaction.
	3	Chemistry of elements of I transition series:
22		Characteristics properties of d-block elements
23		Properties of the elements of the first transition series
24		binary compounds such as carbides, sulphides
25		binary compounds such as Oxides
26		complexes illustrating relative stability of their oxidation states
27		co-ordination number and geometry
		Chemistry of elements of II and III transition series:
28		General characteristics comparative study of II and III transition series: ionic radii, Oxidation states
29		Magnetic behavior, Spectral properties
30		Stereochemistry
	4	Co-ordination compounds
31		IUPAC Nomencluture , isomerism
32		EAN concept, Chelates
33		VBT of transition metal complexes and its limitation
34		Crystal field theory, Crystal field stabilization energy
35		chemical series, limitation of CFT
		Thermochemistry:Standard state, standard enthalpy of formation
36		Hess's law of heat summation and its application
37		Heat of reaction at constant pressure and constant volume
38		Enthalpy of neutralization
39		Second law of thermodynamics, Carnot cycle

40		Carnot cycle efficiency, Carnot theoram, Thermodynamic scale of temperature.
	5	Thermodynamics: concept of entropy
41		entropy, entropy as a function of P &T
42		entropy change in physical change, Clausius inequality
43		entropy as criteria of spontaneity and equilibrium, mixing of gases
44		entropy change in ideal gases
45		Third law of thermodynamics: Nernst heat theorem, statement and concept of residual etropy
46		evaluation of absolute entropy from heat capacity data, Gibbs and Helmholtz function
47		Gibbs function and Helmholtz function as a thermodynamic quantities
48		A and G as a criteria for thermodynamic equilibrium and spontaneity, their advantage over entropy change
49		relative variation of G&A with P,V,T
50		Buffer: Mechanism of buffer action, Henderson-Hazel equation
51		Hydrolysis of salts

Maharaja Ranjit Singh College of Professional Sciences, Indore Department of Chemical Sciences

Lesson Plan - B.Sc. III Sem (July2016-Dec-2016)

Subject - Chemistry Practical

Teacher - Prof. Seema Shintre

Day/Lecture	Unit	Topic
,		Inorganic Chemistry
1		Calibration of the fractional weights, pipettes and burettes
2		Preparation of standard solutions. Dilution of 0.1M to 0.01 M solutions
		Qualitative analysis: Volumetric analysis
3	a	Determination of acetic acid in commercial vinager using NaOH.
4	b	Determination of alkali content- antacid tablet using HCl.
5	c	Estimation of calcium content in chalk as calcium oxalate by permagnatometry.
6	d	Estimation of hardness of water by EDTA.
		Complex compound preparation:
7	1	Diaquabis(methyl acetoacetato) nickel (II)
8	2	Diaquabis(methyl acetoacetato) Cobalt (II)
9	3	Bis (methyl acetoacetato) copper (II) monohydrate
10	4	Potassium chlorochromate(IV)
11	5	Tetraaminecopper(II) sulphate monohydrate
12	6	Hexaaminenickel(II) chloride
		Organic chemistry
		Thin layer chromatography
		Determination of Rf values and identification of organic compounds
13	a	Seperation og green leaf pigments(spinach leaves may be used)
14	b	Preparation and seperation of 2,4- dinitrophenylhydrazones of acetone, 2-butanone, hexane-2, and
		3-one using toluene and light petroleum (40:6)
15	c	Seperation of a mixture of dyes using cyclohexane and ethylacetate.(8:5:1.5)
		Paper chromatography
		Determination of Rf values and identification of organic compounds
16	a	Seperation of mixture of phenylalanine and glycine, alanine and asparic acid.spray reagent ninhydrin
17	b	Seperation of mixture of DL-alanine, glycine and L-lucine using n-butanol:acetic acid :water(4:1:5)
18	c	Seperation of monosaccharides- a mixture of D-galactose and D-fructose.

Department of Chemical Science

Lesson Plan - B.Sc. IV sem (Jan 2017 - june 2017)

Subject - Chemistry Paper I (Chemistry)

Teacher - Prof. Seema Shintre

Day/Lecture	Unit	Topic
Day/Eccure	1	Phase Equilibrium
1	1	Statement and the meaning of terms: phase, component and the degree of freedom
2		Thermodynamic derivation of the Gibbs phase rule
3		One component system: water system, CO2 system
4		Sulphur system
5		Two component system: solid liquid equilibrium, simple eutectic system: Bi-Cd system
6		Pb-Ag system and desilverisation of lead
0		Solid solution
7		Type B system: Zn-Mg system
8		NaCl-H2O system, copper sulphate water system
8		Liquid liquid mixture
9		Raoult's law and Henry's law
10		Ideal and non-ideal solutions
11		Azeotrops: HCl-H2O and ethanol water system
11		Partial miscible liquids
12		Phenol-water, trimethylamine-water and nicotine-water system
13		Lower and upper consolute temperature, steam distillation
14		Nernst distribution law: thermodynamic derivation, application.
14	2	Electrochemistry-I
15		Electrical transport, conduction in metal and electrolyte solutions
16		Resistance, conductance, Specific and equivalent conductivity
17		Measurment of equivalent conductance, effect of dilution on conductivity
18		Migration of ions and Kohlrausch law and application
19		Arrhenius theory of electrolyte dissociation and its limitations
20		Weak and strong electrolytes, Ostwald's dilution law
21		Debye Huckel theoryad DHO equation
22		Transport number, Hittorf method
23		Moving boundary method
23		Types of reversible electrodes: Gas metal ion, metal-metal ion, metal- insoluble salt anion and redox
24		electrode
25		electrode reactions, Nernst equation
26		derivation of cell EMF and single electrode potential
27		Standard hydrogen electrode , standard electrode potential
28		EMF of cell and its measurments, computation of cell EMF
29		calculation of thermodynamic quantities of cell reaction (dG,dH,K)
30		solubility product and activity coefficient
31		potentiometric and conductometric titration
32		defination of pH and pK, determination of pH using hydrogen, quinhydrone and glass electrode by
33		potentiometric methods
33	3	Aldehydes and Ketones
34	3	Nomenclature, structure of the carbonyl group
35		synthesis of aldehydes and ketones - synthesis of aldehyde from acid chlorides
36		synthesis of aldehyde and ketone from 1,3 dithianes
37		synthesis of aldenyde and ketone from 1,5 didmanes synthesis of ketones from nitrilles and carboxylic acids
38		physical properties
39		mechanism of reactions- Aldol condensation and benzoin condensation
40		Perkin reaction and Knoevengel condensations
40		1 CIKIII TORCHOII AHA IXHOC VOHECI COHACHSAHOHS

41		condensation with ammonia nd its derivatives
42		Wittig reaction and Mannich reaction
43		Use of acetals as protecting groups, oxidation of aldehydes
44		Baeyer-Villiger oxidation of ketones, cannizaro reaction
45		MPV, Clemmenson, Wolf Kischner reaction
46		LiAlH4 and NaBH4 reduction, Helogination
		Carboxylic acids
47		Nomenclature ,structure and bonding
48		physical properties and acidity of carboxylic acids
49		effect of substituents on acid strength
50		Preparation and reactions of carboxylic acids
51		HVZ reaction, synthesis of acid chloride, esters and amides
52		reduction of carboxylic acids, Mechanism of decarboxylation
	4	Carboxylic acids derivatives:
53		structure and nomenclature of acid chlorides, esters, amides and acid anhydrides
54		physical properties
55		interconversion of acid derivative by nucleophilic acyl substitution
56		preparation of carboxilic acid derivatives, chemical reactions
57		Mechanism of esterification and hydrolysis
58		Co-ordination Chemistry: MOT diagram for tetrahedral, square planner complex
59		MOT diagram for Octahedral complexes
60		Green Chemistry: principle, 12 tenets
61		description with examples
	5	(a) Chemistry of Lanthanide elements
62		electronic structure, oxidation states
63		ionic radii and lanthanide contraction
64		complex formation occurrence and isolation
65		lanthanide compounds
		(b) Chemistry of Actinides
66		General features and chemistry of actinides
67		chemistry of Np, Pu and Am from U, Similarities between lanthanides and actinides

Department of Chemical Sciences

Lesson Plan - B.Sc. IV Sem (Jan 2017 - June 2017)

Subject - Chemistry Practical

Teacher - Prof. Seema Shintre

Day/Lecture	Unit	Торіс
		Organic Chemistry: Qualitative analysis
1		Identification of an organic compound through the functional group analysis, determination of
		melting point and preparation of suitable derivatives.
		Physical Chemistry
2	a	Determination of transition temperature of given substance by thermometric, dialometric method.
	b	Phase equilibrium:
3	1	To study the effect of solute on the critical solution temperature of two partially miscible liquid.
4	2	To construct the phase diagram of two component by cooling curve method.
	c	Thermochemistry
5	1	To determine the enthalpy of neutralization of weak acid/weak base verses strong acid/ strong base
		and determine the enthalpy of ionization of the weak acid/base.
		Inorganic Chemistry: Quantitative volumetric analysis
6	1	Estimation of ferrous and ferric by dichromate method.
7	2	Estimation of copper using thiosulphate.

Maharaja Ranjit Singh College of Professional Sciences, Indore Department of Chemical Science

Lesson Plan - B.Sc. V Sem Chemistry (July 2016 - Dec 2016)

Subject - Chemistry

Day/Lecture	Unit	Topic Topic
1	I	Organic Compounds of Nitrogen:
2	I	Preparation, properties and chemical reactions of nitroalkanes and nitroarenes.
3		Mechanism of nucleophilic substitution in nitroarenes and their reduction in acidic neutral and alkaline
	I	media, picric acids.
4	I	Halonitroarenes; structure and nomenclature, and their activity.
_	_	Amines structure, and nomenclature, physical properties and stereochemistry, separation of mixture of
5	I	primary, secondary and tertiary amines.
6	I	Structural features affecting basicity of amines. Amine salts as phase transfer catalysts.
7	т	Preparation of alkyl and aryl amines (reduction of nitro compounds, nitriles), reductive amination of
7	I	aldehydic and ketonic compounds,
		Gabriel - phthalamide reaction, Hoffmann bromamide reaction, Reaction of amines, electrophilic aromatic
8	I	substitution in aryl amines, reaction of amines with nitrous acid synthetic transformation of aryl
		diazonium salts, azo coupling.
9	II	A. Carbohydrates-I
10	II	Classification and nomenclature
11	II	monosaccharides
12	II	Mechanism of Osazone formation
13	II	Inter conversion of glucose into fructose
14	II	Ascending and descending series in aldose
15	II	Configuration of monosaccharides
16	II	Stereo isomers of erythro and theo sugars
17	II	Conversion of glucose into mannose
18	II	Glycosides, determination of the size of the ring of monosachharides
19	II	Ring structure of D(+) glucose
20	II	Mechanism of mutarotation
21	II	Structure of ribose and deoxyribose
22	II	B. Carbohydrates-II
23	II	Disaccharides introductory idea of maltose, sucrose, and lactose (excluding structure)
24	II	Polysaccharides introductory idea of starch and cellulose(Excluding Structure)
25	II	Reducing and non-reducng sugars
26	III	A. Photochemistry
27	III	Electromagnetic radiation, range of different regions of the spectrum
28	III	different expression units for energy
29	III	wavelength and frequency
30	III	interaction of radiation with matter
31	III	difference between thermal and photochemical process
32	III	Law of photochemistry
33	III	Grothus Draper Law
34	III	Stark-Einstein Law
35	III	Beer-Lambert Law
36	III	Electronic Transition
37	III	Jablonski Diagram depicting various quantum yield
38	III	B. UV Spectroscopy
39	III	Electronic Excitation
40	III	Elementary Idea of instrument used
41	III	Application to organic molecules
42	III	Woodward-Fieser rule for determining lemda max of enes, polyenes and alpha,beta-unsaturated carbonyl
42	777	compounds
43	IV	A. Bioinorganic Chemistry-I
44	IV	Essential and trace element in biological processes
45	IV	Metalloporphyrins with special reference to haemoglobin and myoglobin
46	IV	Biological role of alkali and alkaline earth metal ions with special reference of Ca2+.

47	IV	B. Bioinorganic Chemistry-II
48	IV	Role of metal ions in biological process, nitrogen fixation
49	IV	oxygen uptake proteins, cytochromes and ferredoxins.
50	V	A. Hard and Soft Acids and Bases(HSAB)
51	V	Classification of acids and bases as hard and soft
52	V	Pearson's HSAB Concept, Symbiosis
53	V	B. Analytical Chemistry
54	V	Errors, their classification, minimisation of errors, precision and accuracy,
55	V	Gravimetric estimation: concept, method and precautions
56	V	Gravimetric estimation of barium and copper
57	V	C. Inorganic Polymer
58	V	Intoduction, scope of inorganic polymers
59	V	special characteristics, Classification and their applications
60	V	Structure and nature of bonding in Silicones and triphosphonitrilic chloride

Maharaja Ranjit Singh College of Professional Sciences, Indore Department of Chemical Science

Lesson Plan - B.Sc. V Sem Chemistry (July 2016- Dec 2016)

Subject - Chemistry Practical

Day/Lecture	Unit	Торіс
1	I	Inorganic Chemistry
2	I	To separate and identify inorganic mixture having five radicals with at least one interfering radical
3	I	To separate and identify inorganic mixture having five radicals with at least one interfering radical
4	I	To separate and identify inorganic mixture having five radicals with at least one interfering radical
5	I	Gravimetric Analysis
6	I	To estimate barium as a barium sulphate
7	II	Organic Chemistry Preparation
8	II	A. Acetylation
9	II	B. Benzoylation
10	II	C. meta-dinitrobenzene
11	II	D. Picric Acid

Department of Chemical Science

Lesson Plan - B.Sc. VI Sem Chemistry (Jan 2017 - June 2017)

Subject - Chemistry

I I I I I I I I I I I I I I I I I I I	Topic A. Amino Acids Classification of Amino Acid Structure, stereochemistry of amino acids Acid base behaviour, isoelectric point General methods of preparation and properties of alpha-amino acids Proteins and peptides. Introduction to peptides linkage, End group analysis, classification, properties and structure of proteins (primary, secondary and tertiary). B. Nucleic acids: Introduction of nucleic acids and constituents of nucleic acid, Ribonucleosides, Ribonucleotides, Double helical structure of DNA C. Elementary idea of Fats, Oils & Detergents: Natural fats, edible and industrial oils of vegetable origin, common fatty acids, glycerides, Hydrogenation of unsaturated oils, Saponification value, iodine value, acid value. A. Organometallic Chemistry: Synthesis; structure and bonding in metal carbonyl complexes, Metal olefin complexes and metal alkyne complexes. Oxidative addition reactions. B. Organometallic Compounds:
I I I I I I I I I I I I I I I I I I I	Structure, stereochemistry of amino acids Acid base behaviour, isoelectric point General methods of preparation and properties of alpha-amino acids Proteins and peptides. Introduction to peptides linkage, End group analysis, classification, properties and structure of proteins (primary, secondary and tertiary). B. Nucleic acids: Introduction of nucleic acids and constituents of nucleic acid, Ribonucleosides, Ribonucleotides, Double helical structure of DNA C. Elementary idea of Fats, Oils & Detergents: Natural fats, edible and industrial oils of vegetable origin, common fatty acids, glycerides, Hydrogenation of unsaturated oils, Saponification value, iodine value, acid value. A. Organometallic Chemistry: Synthesis; structure and bonding in metal carbonyl complexes, Metal olefin complexes and metal alkyne complexes. Oxidative addition reactions. B. Organometallic Compounds:
I I I I I I I I I I I I I I I I I I I	Acid base behaviour, isoelectric point General methods of preparation and properties of alpha-amino acids Proteins and peptides. Introduction to peptides linkage, End group analysis, classification, properties and structure of proteins (primary, secondary and tertiary). B. Nucleic acids: Introduction of nucleic acids and constituents of nucleic acid, Ribonucleosides, Ribonucleotides, Double helical structure of DNA C. Elementary idea of Fats, Oils & Detergents: Natural fats, edible and industrial oils of vegetable origin, common fatty acids, glycerides, Hydrogenation of unsaturated oils, Saponification value, iodine value, acid value. A. Organometallic Chemistry: Synthesis; structure and bonding in metal carbonyl complexes, Metal olefin complexes and metal alkyne complexes. Oxidative addition reactions. B. Organometallic Compounds:
I I I I I I I I I I I I I I I I I I I	General methods of preparation and properties of alpha-amino acids Proteins and peptides. Introduction to peptides linkage, End group analysis, classification, properties and structure of proteins (primary, secondary and tertiary). B. Nucleic acids: Introduction of nucleic acids and constituents of nucleic acid, Ribonucleosides, Ribonucleotides, Double helical structure of DNA C. Elementary idea of Fats, Oils & Detergents: Natural fats, edible and industrial oils of vegetable origin, common fatty acids, glycerides, Hydrogenation of unsaturated oils, Saponification value, iodine value, acid value. A. Organometallic Chemistry: Synthesis; structure and bonding in metal carbonyl complexes, Metal olefin complexes and metal alkyne complexes. Oxidative addition reactions. B. Organometallic Compounds:
I I I I I I I I I I I I I I I I I I I	General methods of preparation and properties of alpha-amino acids Proteins and peptides. Introduction to peptides linkage, End group analysis, classification, properties and structure of proteins (primary, secondary and tertiary). B. Nucleic acids: Introduction of nucleic acids and constituents of nucleic acid, Ribonucleosides, Ribonucleotides, Double helical structure of DNA C. Elementary idea of Fats, Oils & Detergents: Natural fats, edible and industrial oils of vegetable origin, common fatty acids, glycerides, Hydrogenation of unsaturated oils, Saponification value, iodine value, acid value. A. Organometallic Chemistry: Synthesis; structure and bonding in metal carbonyl complexes, Metal olefin complexes and metal alkyne complexes. Oxidative addition reactions. B. Organometallic Compounds:
I I I I I I I I I I I I I	End group analysis, classification, properties and structure of proteins (primary, secondary and tertiary). B. Nucleic acids: Introduction of nucleic acids and constituents of nucleic acid, Ribonucleosides, Ribonucleotides, Double helical structure of DNA C. Elementary idea of Fats, Oils & Detergents: Natural fats, edible and industrial oils of vegetable origin, common fatty acids, glycerides, Hydrogenation of unsaturated oils, Saponification value, iodine value, acid value. A. Organometallic Chemistry: Synthesis; structure and bonding in metal carbonyl complexes, Metal olefin complexes and metal alkyne complexes. Oxidative addition reactions. B. Organometallic Compounds:
I I I I I I I I I I I I I I I I I I I	End group analysis, classification, properties and structure of proteins (primary, secondary and tertiary). B. Nucleic acids: Introduction of nucleic acids and constituents of nucleic acid, Ribonucleosides, Ribonucleotides, Double helical structure of DNA C. Elementary idea of Fats, Oils & Detergents: Natural fats, edible and industrial oils of vegetable origin, common fatty acids, glycerides, Hydrogenation of unsaturated oils, Saponification value, iodine value, acid value. A. Organometallic Chemistry: Synthesis; structure and bonding in metal carbonyl complexes, Metal olefin complexes and metal alkyne complexes. Oxidative addition reactions. B. Organometallic Compounds:
I I I I I I I I I I I I I I I I I I I	constituents of nucleic acid, Ribonucleosides, Ribonucleotides, Double helical structure of DNA C. Elementary idea of Fats, Oils & Detergents: Natural fats, edible and industrial oils of vegetable origin, common fatty acids, glycerides, Hydrogenation of unsaturated oils, Saponification value, iodine value, acid value. A. Organometallic Chemistry: Synthesis; structure and bonding in metal carbonyl complexes, Metal olefin complexes and metal alkyne complexes. Oxidative addition reactions. B. Organometallic Compounds:
I I I I I I I I I I I I I I I I I I I	Double helical structure of DNA C. Elementary idea of Fats, Oils & Detergents: Natural fats, edible and industrial oils of vegetable origin, common fatty acids, glycerides, Hydrogenation of unsaturated oils, Saponification value, iodine value, acid value. A. Organometallic Chemistry: Synthesis; structure and bonding in metal carbonyl complexes, Metal olefin complexes and metal alkyne complexes. Oxidative addition reactions. B. Organometallic Compounds:
I I I I I I I I I I I I I I I I I I I	C. Elementary idea of Fats, Oils & Detergents: Natural fats, edible and industrial oils of vegetable origin, common fatty acids, glycerides, Hydrogenation of unsaturated oils, Saponification value, iodine value, acid value. A. Organometallic Chemistry: Synthesis; structure and bonding in metal carbonyl complexes, Metal olefin complexes and metal alkyne complexes. Oxidative addition reactions. B. Organometallic Compounds:
I I I II II II II II	Natural fats, edible and industrial oils of vegetable origin, common fatty acids, glycerides, Hydrogenation of unsaturated oils, Saponification value, iodine value, acid value. A. Organometallic Chemistry: Synthesis; structure and bonding in metal carbonyl complexes, Metal olefin complexes and metal alkyne complexes. Oxidative addition reactions. B. Organometallic Compounds:
I I II II II II II	Natural fats, edible and industrial oils of vegetable origin, common fatty acids, glycerides, Hydrogenation of unsaturated oils, Saponification value, iodine value, acid value. A. Organometallic Chemistry: Synthesis; structure and bonding in metal carbonyl complexes, Metal olefin complexes and metal alkyne complexes. Oxidative addition reactions. B. Organometallic Compounds:
I II II II II II II II	Hydrogenation of unsaturated oils, Saponification value, iodine value, acid value. A. Organometallic Chemistry: Synthesis; structure and bonding in metal carbonyl complexes, Metal olefin complexes and metal alkyne complexes. Oxidative addition reactions. B. Organometallic Compounds:
I II II II II II II II	Saponification value, iodine value, acid value. A. Organometallic Chemistry: Synthesis; structure and bonding in metal carbonyl complexes, Metal olefin complexes and metal alkyne complexes. Oxidative addition reactions. B. Organometallic Compounds:
II II II II	A. Organometallic Chemistry: Synthesis; structure and bonding in metal carbonyl complexes, Metal olefin complexes and metal alkyne complexes. Oxidative addition reactions. B. Organometallic Compounds:
II II II II	Synthesis; structure and bonding in metal carbonyl complexes, Metal olefin complexes and metal alkyne complexes. Oxidative addition reactions. B. Organometallic Compounds:
II II II	Metal olefin complexes and metal alkyne complexes. Oxidative addition reactions. B. Organometallic Compounds:
II II	Oxidative addition reactions. B. Organometallic Compounds:
II II	B. Organometallic Compounds:
II	<u> </u>
	Organomagnesium Compound -
	Grigard Reagent and Organolithium Compounds,
	Methods of preparation, structure and synthetic applications.
	Magnetic properties of transition metal complexes:
	Magnetic moment
	(spin only and with L-S coupling),
	orbital contribution magnetic moment.
	B. Electronic spectra of transition metal complexes:
	Spectroscopic ground and excited states,
III	Types of electronic transitions,
III	Selection rules for d-d transitions,
III	Orgel-energy level diagram for d1 to d9 states.
III	C. Water Analysis:
III	Hardness, types of hardness,
III	Acidity and alkalinity, BOD, COD and DO.
IV	A. Infrared spectroscopy:
IV	Statement of the Born-Oppenheimer approximation,
IV	Rotational spectrum of diatomic molecules.
IV	Energy levels of a rigid rotator,
IV	Selection rule, intensity of absorption bands,
IV	Maxwell- Boltzmann distribution and
IV	Population of energy levels.
IV	B. Energy levels of simple harmonic oscillator,
	selection rules,
	Pure vibrational spectrum,
	Intensity and qualitative relation of force constant and bond energies,
	Degree of freedom and
	Modes of vibration,
	vibrational frequencies of different functional groups.
	C. Raman Spectroscopy:
	Concept of polarizability,
	Pure rotational and Pure vibrational Raman spectra of diatomic molecules.
	Selection rules, application of Raman spectrum. A. NMR Spectroscopy
	III

54	V	Principle and Instrumentation,
55	V	NMR active nucleus,
56	V	Chemical shift, spin-spin coupling,
57	V	Spectrum of ethanol and ethanal.
58	V	B. Surface Phenomena and Catalysis:
59	V	Adsorption of gases and liquids on solid adsorbent,
60	V	Freundlich and Langmuir adsorption isotherms,
61	V	Determination of surface area,
62	V	Characteristics and mechanism of heterogeneous catalysis.

Department of Chemical Science

Lesson Plan - B.Sc. VI Sem Chemistry (Jan 2017 - June 2017)

Subject - Chemistry Practical

Day/Lecture	Unit	Topic
1	I	Organic Chemistry
2	I	To separate and identify organic mixture having two solid also prepare their derivatives
3	I	To separate and identify organic mixture having two solid also prepare their derivatives
4	I	To separate and identify organic mixture having two solid also prepare their derivatives
5	I	To separate and identify organic mixture having two solid also prepare their derivatives
6	II	Physical Instrumentation
7	II	A. Job's Method
8	II	B. Mole-ratio method
9	III	Inorganic Chemistry
10	III	Effluent Analysis: to identify cations and anions in given water samples.
11	III	Water Analysis:To determine the dissolve oxygen in given water sample in ppm units.
12	III	To determine the hardness of water samples.